我要投稿 设为首页 加入收藏
JavaScript
  • 中国招商引资网
  • 北京世录文化有限公司

TOP

生物质制芳烃技术进展与发展前景
2015-09-12 09:46:47 来源:中国新能源网 作者: 【 】 浏览:682次 评论:0

  摘要:对目前利用生物质生产芳烃几种路线以及研究进展进行评述。介绍了前景较好的代表性工艺,如:Anellotech公司开发的生物质热解制芳烃(Bio-AromaticsTM)工艺、Virent公司开发的生物基氢解糖类经过催化转化制PX(Bio-FormingTM)工艺以及Gevo公司开发的生物质异丁醇制芳烃工艺,并详细分析了各工艺的原料来源、工艺流程、工艺条件等特点。分析几种生物质芳烃工艺生产成本,并对照传统石脑油裂解重整制芳烃生产成本,分析各工艺经济性后,得出结论:Anellotech公司开发的生物质热解制芳烃工艺经济性成本与经济性最佳。在此基础上,提出今后生物质制芳烃的研究应当以提高原料利用效率、增加芳烃产率和选择性为重点,开发适合生物质转化反应的催化剂和反应器。

  芳烃(包括苯、甲苯、二甲苯,简称BTX)是重要的基本有机原料,利用芳烃资源可衍生出多种产品链,广泛用于合成树脂、合成纤维单体、涂料、燃料、医药以及精细化学品等领域。目前国内外芳烃生产主要依赖石油资源,在芳烃联合生产装置中,在催化剂和高温高压的条件下经过加氢、重整、芳烃转化、分离等过程获得苯、甲苯、二甲苯,工艺复杂。石油等化石燃料储量有限,随着化石燃料的大量消耗,原油价格不断上升,以石油为主导的化工工业成本也不断攀升。不仅如此,石油炼化过程中产生大量副产物及其它有毒气体和废料,严重污染环境。因此,寻找可再生、环保型的替代原料并将其转化为芳烃产品便引起了国内外许多公司和研究机构的关注。

  生物质直接或间接来源于太阳能和植物的光合作用,包括植物、农作物、林产物、海产物、农林废弃物、城市废弃物(报纸、天然纤维等),相对于石化资源而言储量更加丰富,而且可再生[1]。全球每年生物质产量约2000亿吨,且80~200亿吨的原始生物质也有开发的潜力[2]。生物质通过合理转化可以生产多种有机化学品和燃料,利用生物质制芳烃技术的开发和应用,不仅可以减少芳烃生产对石化与燃料的依赖性,也是缓解全球石油资源稀缺的替代工艺。

  1生物质制芳烃工艺发展现状

  近年来,全球多家石油化工公司、生物化学品公司和高校均对生物法制苯、甲苯、二甲苯工艺产生浓厚兴趣,开发了多种制备线路,并取得实验室研究成果。在生物质制芳烃工艺路线方面,除发酵路线外,与化工过程较为接近、且有发展前景的工艺路线有3条:生物质先气化为合成气,再以合成气为原料经C1化工路线生产燃料和化学品;生物含烃原料在催化剂作用下进行热解,可生产烯烃、芳烃等产品;以生物质发酵的酮、醇类等发酵产物为原料,制备乙烯、丙烯、二甲苯等芳烃产品。国外多家公司在这些工艺开发上已取得初步成果,有的已计划建设工业装置,值得重点关注。以生物质为原料制芳烃的几种途径如图1所示。

  1.1生物质经合成气制芳烃

  生物质气化是生物质利用的重要方向之一,是在高温条件下,将生物质燃料中的可燃部分转化为可燃气的热化学反应。生物质气化的原料来源广泛,可以用秸秆、薪柴、林业加工废弃物等废弃物资源,生物质气化的产品即合成气,是一碳化工的源头,可以用来生产甲醇、合成油等各种化工产品。

  目前,利用合成气制芳烃的途径主要有两种:合成气经费托合成制芳烃、合成气经甲醇制芳烃。

  1.1.1合成气经费托合成制芳烃

  费托合成(Fischer-Tropsch)是目前应用最广泛的合成气制燃料、化学品的生产工艺。自1923年发明以来,受到广泛的关注,南非Sasol、美国Shell、Rentech等公司开发了多种费托合成技术。目前费托合成的原料合成气大多来自煤气化,以生物质作为气化原料与费托合成相结合,将合成气转化为燃料及其它化学品也是生物质利用路线之一。费托合成按其反应体系的温度可分为低温费托技术和高温费托技术两大类。以Sasol公司开发的费托合成技术为例,低温费托合成反应温度约250℃,绝大部分产品为烷烃,不含芳烃;高温费托合成反应温度约350℃,产品中烯烃和烷烃含量超过80%,芳烃含量约6%[3]。可见,虽然费托合成可作为生物质气化的一种转化方式,但其主要产品烷烃和烯烃,芳烃仅占很小的一部分。

  1.1.2合成气经甲醇/二甲醚制芳烃

  目前,合成气制甲醇/二甲醚技术成熟,且国内甲醇产能过剩,将甲醇作为高附加值化学品的生产原料进行综合利用不仅能消化部分甲醇产能,也为芳烃生产提供了一条可行的路径。早在1985年,Mobil公司就在其专利中首次公布了甲醇、二甲醚转化制芳烃的研究成果,但芳烃产率不高[4]。2002年Chevron Phillips公司也在专利中公布了采用两种分子筛催化剂由甲醇、二甲醚为原料联合生产芳烃的技术[5]。

  近年来,国内甲醇、二甲醚芳构化的技术取得突破性进展,包括中科院山西煤炭化学研究所的固定床甲醇、二甲醚制芳烃(MTA)技术[6]和清华大学的甲醇、二甲醚循环流化床制芳烃(FMTA)技术[7]。其主要原理是:以甲醇或二甲醚为原料,采用改性ZSM-5催化剂,将甲醇、二甲醚转化为以芳烃尾注的产物,经冷却分离将气相产物低碳烃和液相产物分离,液相产物萃取得到芳烃,低碳烃类进一步芳构化。目前,采用FMTA技术的100吨/年实验装置已连续稳定运行上千小时。2010年6月,中国华电集团已决定采用清华大学的FMTA技术在山西建设万吨级中试装置和工业化项目[8]。此外,河南煤化集团研究院与北京化工大学合作对甲醇芳构化催化剂性能改进开展研究,并取得阶段性成果[9]。

  无论是生物质通过费托合成还是经甲醇制芳烃,都需要经过生物质向合成气的转化。与煤相比,生物质作为气化原料具有:挥发分高、固定碳含量低的特点,其灰分和热值明显低于煤炭,且生物质硫含量、氮含量低,气化过程中产生的二氧化硫和氮氧化物较少,对环境影响小[10],是一种优良的合成气生产原料。但生物质的能量密度低,存在气化时温度过低、过程不易控制、设备易腐蚀、生成焦油多等诸多问题。不仅如此,生物质气化过程中生物质原料中约有50%的碳被转化成二氧化碳而不是一氧化碳,气化效率低于煤炭。因此,目前合成气的生产原料仍然以煤为主,目前甲醇制芳烃新建装置都是采用煤气化产生的合成气为甲醇原料,未见采用生物基合成气生产甲醇的报道。

  1.2生物质热解制芳烃

  生物质热解法制芳烃是以含烃的固态生物质(如木质、农产品、海洋植物、代谢废料、纤维废料等)为起始原料,将其加热分解产生热解产品(挥发有机物),在催化剂的作用下,经脱氢、脱羰、脱羧、异构化、聚合等一系列复杂反应,获得苯、甲苯、萘、二甲苯、烯烃等产品。虽然同为全生物质流程,热解工艺不同于气化工艺。气化过程产生由CO、H2、CH4组成的合成气。而热解工艺则将生物质直接转化为液体燃料。

  美国马赛诸萨州立大学对生物质木质素催化裂解制芳烃工艺进行了深入研究,并开发了Biomass to AromaticTM工艺[11],并成立Anellotech公司致力于将其推向工业化生产。Biomass to AromaticTM工艺以非粮食类生物质(植物秸秆、废木材等)为原料,通过CFPTM(catalytic fast pyrolysis,催化快速热解)技术制芳烃,是目前发展前景较好的生物质热解制芳烃工艺[12]。2011年,该工艺建成实验装置,Anellotech计划与合作者在2014年建成BTX产能为800万加仑(2.6万吨/年)的工业化装置[13]。Biomass to AromaticTM工艺的流程如图2。

  CFPTM技术生物质所含的结构性分子(纤维素和木质素)局部热解为热解蒸气后,在催化剂的作用下经一系列反应最终转化为燃料产品和芳烃,同时产生焦炭、CO、CO2和水。工艺控制关键在于提高芳烃产品选择性,同时降低结焦。Anellotech公司开发的Biomass-to-AromaticTM工艺将固态生物质原料(如木材废料、玉米秸秆、甘蔗渣等)干燥后研磨至粉末,与粉状ZSM-5催化剂混合送入高温循环流化床反应器中,以气体涡流的形式充分混合并加热;一定条件(600℃,0.1~0.4MPa)下,原料粉末经过催化剂孔道时迅速转化为芳烃,并在催化剂表面产生积碳使其失活;失活催化剂和反应产物一并移至网状分离器,反应物经冷凝、提纯可获得BTX产品,催化剂则送入再生系统恢复活性后返回反应器循环利用。再生系统内部催化剂烧焦所产生的热量可用于工艺供热和供能。为防止水和氧气对反应温度控制产生不良影响,工艺过程采用无氧无水条件,反应物流以工艺产生的H2或CO/CO2气体作为载体[14]。

  Biomass-to-Aromatic工艺是一种高效的生物质转化工艺,所有化学反应在一个流化床中完成,有效提高芳烃选择性和产率,具备良好的工艺可行性。其工艺设备(反应器、催化剂再生器等)与石油炼化(如FCC)装置类似,同时保证了快速的热交换和流体动力以避免催化剂结焦,可依托现有炼化装置进行改造;工艺催化剂采用石油炼化工业中广泛应用的含有多孔硅/铝构造的ZSM-5沸石,虽然催化剂具体组成尚未公开,但据称催化剂成本并不高昂。不仅如此,工艺过程所产生副产(焦炭、水、气体、烯烃等)均可得到有效利用,装置能源经济性良好[15]。

  据Anellotech称,采用该工艺目前1t生物质可生产50加仑BTX产品,产率可达40%,预计未来BTX产率可达85加仑/吨生物质[13]。当原油价格为50~60美元/桶时,由于产品无需进行进一步加工,该工艺具备与石油原料路线生产的BTX相竞争的成本优势[16]。

  1.3生物基氢解糖类经过催化转化工艺制PX

  生物质原料富含植物纤维,其中的木质素、纤维素、半纤维素可以通过发酵酶解或催化剂加氢分解为醇、酚醛、酮、呋喃、酸等多种小分子混合的氢解物。在一定的反应条件和催化剂作用下,氢解物可经脱氧、脱氢、环化等系列反应转化为芳烃产品。

  美国Virent公司与Wisconsin-Madison大学合作,将植物纤维水解与传统催化加氢技术相结合,开发了BioFormingTM工艺,于2011年宣布可从100%可再生的植物基糖类中成功制得PX产品,并为产品申请商标BioPXTM[17]。Virent公司目前正在与潜在的合作伙伴和客户探讨进一步扩大现有1万加仑/年示范装置能力大规模商品化的途径,预计2015年将建成第一个商业化生物基PX装置。
 
  BioFormingTM工艺是在美国Virent公司纤维素多糖催化(CLS)技术的基础上发展的。生产原料来源广泛,包括玉米、甘蔗和木质等生物质。工艺过程包括:将生物质原料(玉米秸秆、木材废料)水解转化为富含碳水化合物(醇、糖、醛)的水解液;利用美国威斯康辛大学开发的液相重整(APR)技术,将糖类混合物脱氧转化为单氧化合物(醇、醛等),同时生成氢气和二氧化碳,APR反应器为并流下行多管反应器,以活性碳负载铂和铁/铼金属的非均相催化剂,在低温(≤400℃)、低压(≤5MPa)的条件发生系列反应[18];APR重整产品经连续催化缩合和加氢脱氧反应获得富含C5+烷烃、异构烷烃以及芳烃的粗产品,经简单分离即可得到高辛烷值生物汽油和PX产品。加氢重整所需氢气可使用APR反应副产氢气,也可追加外源氢气,副产C1~C4轻烃可作为工艺热源。

  BioFormingTM工艺所得重整产品组成与传统石油炼化的重整产品组成十分接近,如图4所示。从产品液相色谱图和产品主要组分(表1)可以看出,Virent产品分布接近商用89号汽油,简单分离后即可作为现代商用汽油的的替代品投入使用;而富含的C7/C8芳烃组分(BTX)则可单独分离作为产品。

您看到此篇文章时的感受是:
Tags:生物质 技术 进展 发展前景 责任编辑:xinxi
】【打印繁体】【投稿】【收藏】 【推荐】【举报】【评论】 【关闭】 【返回顶部
分享到QQ空间
分享到: 
上一篇没有了 下一篇芳烃溶剂油市场基本面平稳 弱势盘..

酷图推荐

评论

帐  号: 密码: (新用户注册)
验 证 码:
表  情:
内  容:

相关栏目

最新文章

图片主题

热门文章

推荐文章

相关文章

广告位

 

香港联系方式
地 址:香港铜锣湾轩尼诗道488号轩尼诗大厦10M
香港广告信息发布电话:00-852-2915.7428 2915 6312 传真:00-852-2915.6313
香港市场部对外合作:00-852-9176 9051 

各地办事处:
深圳广告信息发布电话:0755-82216390
澳门广告信息发布电话:00-853-6651 8999
各地代理机构:征求代理 (010) 6480.3637

北京本部联系方式:

地址:北京市亚奥地区安立路大屯路口天创世缘大厦B1座25层2502室(奥运村东门300米)

业务及合作电话:(010)64803638 QQ/E-mail:bj64803638@126.comEmail
市场部合作:(010)64803637 财务部:64802562 传真:64803639
集团市场部:北京东二环朝外大街北街蓝筹名座A座1区10层(外交部北200米,中央驻港办对面)

集团市场部合作代销(010)64802600 

 

邮 编:100012

开户行:北京银行北辰路支行
帐 号:010 905 166 001 201 051 170 80